Gaps between consecutive eigenvalues for compact metric graphs
On a compact metric graph, we consider the spectrum of the Laplacian defined with a mix of standard and Dirichlet vertex conditions. A Cheeger-type lower bound on the gap λ2−λ1 is established, with a constant that depends only on the total length of the graph and minimum edge length. We also prove s...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2024-03, Vol.531 (1), p.127802, Article 127802 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | On a compact metric graph, we consider the spectrum of the Laplacian defined with a mix of standard and Dirichlet vertex conditions. A Cheeger-type lower bound on the gap λ2−λ1 is established, with a constant that depends only on the total length of the graph and minimum edge length. We also prove some improvements of known upper bounds for eigenvalue gaps and ratios for metric trees and extensions to certain other types of graphs. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2023.127802 |