Global well-posedness of the Navier–Stokes equations in homogeneous Besov spaces on the half-space

Consider the Stokes equations in the half-space R+n, n≧2. It is shown that the negative of the Stokes operator defined on the homogeneous Besov space B˙p,q,σs(R+n) generates a bounded strongly continuous semigroup in B˙p,qs(R+n) provided that 1

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2024-02, Vol.530 (1), p.127680, Article 127680
1. Verfasser: Watanabe, Keiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Consider the Stokes equations in the half-space R+n, n≧2. It is shown that the negative of the Stokes operator defined on the homogeneous Besov space B˙p,q,σs(R+n) generates a bounded strongly continuous semigroup in B˙p,qs(R+n) provided that 1
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2023.127680