Global well-posedness of the Navier–Stokes equations in homogeneous Besov spaces on the half-space
Consider the Stokes equations in the half-space R+n, n≧2. It is shown that the negative of the Stokes operator defined on the homogeneous Besov space B˙p,q,σs(R+n) generates a bounded strongly continuous semigroup in B˙p,qs(R+n) provided that 1
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2024-02, Vol.530 (1), p.127680, Article 127680 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consider the Stokes equations in the half-space R+n, n≧2. It is shown that the negative of the Stokes operator defined on the homogeneous Besov space B˙p,q,σs(R+n) generates a bounded strongly continuous semigroup in B˙p,qs(R+n) provided that 1 |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2023.127680 |