Gaussian curvature of minimal graphs in M×R

In this paper, we consider minimal graphs in the three-dimensional Riemannian manifold M×R. We mainly estimate the Gaussian curvature of such surfaces. We consider the minimal disks and minimal graphs bounded by two Jordan curves in parallel planes. The key to the proofs is the Weierstrass represent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2024-01, Vol.529 (1), p.127589, Article 127589
1. Verfasser: Kalaj, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider minimal graphs in the three-dimensional Riemannian manifold M×R. We mainly estimate the Gaussian curvature of such surfaces. We consider the minimal disks and minimal graphs bounded by two Jordan curves in parallel planes. The key to the proofs is the Weierstrass representation of those surfaces via ℘-harmonic mappings. We also prove some Schwarz lemma type results and some Heinz type results for harmonic mappings between geodesic disks in Riemannian surfaces.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2023.127589