Mathematical effects of linear visco-elasticity in quasi-static Biot models

We investigate and clarify the mathematical properties of linear poro-elastic systems in the presence of classical (linear, Kelvin-Voigt) visco-elasticity. In particular, we quantify the time-regularizing and dissipative effects of visco-elasticity in the context of the quasi-static Biot equations....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2023-11, Vol.527 (2), p.127462, Article 127462
Hauptverfasser: Bociu, Lorena, Muha, Boris, Webster, Justin T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate and clarify the mathematical properties of linear poro-elastic systems in the presence of classical (linear, Kelvin-Voigt) visco-elasticity. In particular, we quantify the time-regularizing and dissipative effects of visco-elasticity in the context of the quasi-static Biot equations. The full, coupled pressure-displacement presentation of the system is utilized, as well as the framework of implicit, degenerate evolution equations, to demonstrate such effects and characterize linear poro-visco-elastic systems. We consider a simple presentation of the dynamics (with convenient boundary conditions, etc.) for clarity in exposition across several relevant parameter ranges. Clear well-posedness results are provided, with associated a priori estimates on the solutions. In addition, precise statements of admissible initial conditions in each scenario are given.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2023.127462