Global Hölder regularity for eigenfunctions of the fractional g-Laplacian

We establish global Hölder regularity for eigenfunctions of the fractional g−Laplacian with Dirichlet boundary conditions where g=G′ and G is a Young function satisfying the so called Δ2 condition. Our results apply to more general semilinear equations of the form (−Δg)su=f(u).

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2023-10, Vol.526 (1), p.127332, Article 127332
Hauptverfasser: Fernández Bonder, Julián, Salort, Ariel, Vivas, Hernán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We establish global Hölder regularity for eigenfunctions of the fractional g−Laplacian with Dirichlet boundary conditions where g=G′ and G is a Young function satisfying the so called Δ2 condition. Our results apply to more general semilinear equations of the form (−Δg)su=f(u).
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2023.127332