Two-species nonlocal cross-diffusion models with free boundaries

A class of two-species nonlocal cross-diffusion models with free boundaries in one space dimension is investigated. In the models, the two species exist initially in (−∞,s10] and (−∞,s20], respectively, and then spread into the right space. The spreading fronts and nonlocal cross-diffusion of the sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2023-09, Vol.525 (2), p.127279, Article 127279
Hauptverfasser: Tan, Qi-Jian, Feng, Yu-Wen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A class of two-species nonlocal cross-diffusion models with free boundaries in one space dimension is investigated. In the models, the two species exist initially in (−∞,s10] and (−∞,s20], respectively, and then spread into the right space. The spreading fronts and nonlocal cross-diffusion of the species are described by the free boundaries and integral diffusion operators, respectively. By introducing some parameterized ODE problems and by applying the contraction mapping theorem and deriving some estimates, we give the global existence and uniqueness of solutions for the models. These results are applied to the nonlocal cross-diffusion prey-predator and competition models.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2023.127279