Local null-controllability of a system coupling Kuramoto-Sivashinsky-KdV and elliptic equations
This paper deals with the null-controllability of a system of mixed parabolic-elliptic pdes at any given time T>0. More precisely, we consider the Kuramoto-Sivashinsky–Korteweg-de Vries equation coupled with a second order elliptic equation posed in the interval (0,1). We first show that the line...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2023-09, Vol.525 (1), p.127213, Article 127213 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper deals with the null-controllability of a system of mixed parabolic-elliptic pdes at any given time T>0. More precisely, we consider the Kuramoto-Sivashinsky–Korteweg-de Vries equation coupled with a second order elliptic equation posed in the interval (0,1). We first show that the linearized system is globally null-controllable by means of a localized interior control acting on either the KS-KdV or the elliptic equation. Using the Carleman approach, we provide the existence of a control with the explicit cost CeC/T with some constant C>0 independent in T. Then, applying the source term method developed in [39], followed by the Banach fixed point theorem, we conclude the small-time local null-controllability result of the nonlinear system. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2023.127213 |