Local null-controllability of a system coupling Kuramoto-Sivashinsky-KdV and elliptic equations

This paper deals with the null-controllability of a system of mixed parabolic-elliptic pdes at any given time T>0. More precisely, we consider the Kuramoto-Sivashinsky–Korteweg-de Vries equation coupled with a second order elliptic equation posed in the interval (0,1). We first show that the line...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2023-09, Vol.525 (1), p.127213, Article 127213
Hauptverfasser: Bhandari, Kuntal, Majumdar, Subrata
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper deals with the null-controllability of a system of mixed parabolic-elliptic pdes at any given time T>0. More precisely, we consider the Kuramoto-Sivashinsky–Korteweg-de Vries equation coupled with a second order elliptic equation posed in the interval (0,1). We first show that the linearized system is globally null-controllable by means of a localized interior control acting on either the KS-KdV or the elliptic equation. Using the Carleman approach, we provide the existence of a control with the explicit cost CeC/T with some constant C>0 independent in T. Then, applying the source term method developed in [39], followed by the Banach fixed point theorem, we conclude the small-time local null-controllability result of the nonlinear system.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2023.127213