Loewner chains and evolution families on parallel slit half-planes

In this paper, we define and study Loewner chains and evolution families on finitely multiply-connected domains in the complex plane. These chains and families consist of conformal mappings on parallel slit half-planes and have one and two “time” parameters, respectively. By analogy with the case of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2023-10, Vol.526 (1), p.127180, Article 127180
1. Verfasser: Murayama, Takuya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we define and study Loewner chains and evolution families on finitely multiply-connected domains in the complex plane. These chains and families consist of conformal mappings on parallel slit half-planes and have one and two “time” parameters, respectively. By analogy with the case of simply connected domains, we develop a general theory of Loewner chains and evolution families on multiply connected domains and, in particular, prove that they obey the chordal Komatu–Loewner differential equations driven by measure-valued processes. Our method involves Brownian motion with darning, as do some recent studies.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2023.127180