Higher rank numerical ranges of normal operators and unitary dilations

Here we give a closure free description of the higher rank numerical range of a normal operator acting on a separable Hilbert space. This generalizes a result of Avendaño for self-adjoint operators. It has several interesting applications. We show using Durszt's example that there exists a norm...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2023-08, Vol.524 (2), p.127077, Article 127077
Hauptverfasser: Dey, Pankaj, Mukherjee, Mithun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here we give a closure free description of the higher rank numerical range of a normal operator acting on a separable Hilbert space. This generalizes a result of Avendaño for self-adjoint operators. It has several interesting applications. We show using Durszt's example that there exists a normal contraction T for which the intersection of the higher rank numerical ranges of all unitary dilations of T contains the higher rank numerical range of T as a proper subset. We strengthen and generalize a result of Wu by providing a necessary and sufficient condition for the higher rank numerical range of a normal contraction being equal to the intersection of the higher rank numerical ranges of all possible unitary dilations of it. We also show that the above condition is necessary for a general contraction.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2023.127077