Polynomial stability for a Timoshenko-type system of thermoelasticity with partial Kelvin-Voigt damping

In this paper, we study a 1-d Timoshenko-type system of thermoelasticity with local distributed Kelvin-Voigt damping. Firstly, by combining semigroup theory with the principle of unique continuation, we prove the well-posedness and strong stability of the system. Then, for 0≤α

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2023-04, Vol.520 (2), p.126908, Article 126908
Hauptverfasser: Cui, Jianan, Chai, Shugen, Cao, Xiaomin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study a 1-d Timoshenko-type system of thermoelasticity with local distributed Kelvin-Voigt damping. Firstly, by combining semigroup theory with the principle of unique continuation, we prove the well-posedness and strong stability of the system. Then, for 0≤α
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2022.126908