Polynomial stability for a Timoshenko-type system of thermoelasticity with partial Kelvin-Voigt damping
In this paper, we study a 1-d Timoshenko-type system of thermoelasticity with local distributed Kelvin-Voigt damping. Firstly, by combining semigroup theory with the principle of unique continuation, we prove the well-posedness and strong stability of the system. Then, for 0≤α
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2023-04, Vol.520 (2), p.126908, Article 126908 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study a 1-d Timoshenko-type system of thermoelasticity with local distributed Kelvin-Voigt damping. Firstly, by combining semigroup theory with the principle of unique continuation, we prove the well-posedness and strong stability of the system. Then, for 0≤α |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2022.126908 |