Meromorphic functions on annuli sharing finite sets with truncated multiplicity
The purpose of this article is twofold; first, to establish a second main theorem for meromorphic functions on annuli and meromorphic function targets (may not be small functions) with truncated counting functions (truncation level 1) and with a detailed estimate for the error term; second, to show...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2023-04, Vol.520 (2), p.126872, Article 126872 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of this article is twofold; first, to establish a second main theorem for meromorphic functions on annuli and meromorphic function targets (may not be small functions) with truncated counting functions (truncation level 1) and with a detailed estimate for the error term; second, to show that if the polynomialPS(w)=(w−a1)⋯(w−aq) is a uniqueness polynomial for admissible meromorphic functions on an annulus A(R0) such that PS′(w) has exactly k distinct zeros and q>(5k+7)ℓ2ℓ−175, then the set S={a1,…,aq} is a finite range set with truncation level ℓ for admissible meromorphic functions on A(R0). This result extends the previous result on the finite range set (with truncation level ℓ=∞) for holomorphic functions on C of Fujimoto. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2022.126872 |