Meromorphic functions on annuli sharing finite sets with truncated multiplicity

The purpose of this article is twofold; first, to establish a second main theorem for meromorphic functions on annuli and meromorphic function targets (may not be small functions) with truncated counting functions (truncation level 1) and with a detailed estimate for the error term; second, to show...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2023-04, Vol.520 (2), p.126872, Article 126872
1. Verfasser: Si, Duc Quang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this article is twofold; first, to establish a second main theorem for meromorphic functions on annuli and meromorphic function targets (may not be small functions) with truncated counting functions (truncation level 1) and with a detailed estimate for the error term; second, to show that if the polynomialPS(w)=(w−a1)⋯(w−aq) is a uniqueness polynomial for admissible meromorphic functions on an annulus A(R0) such that PS′(w) has exactly k distinct zeros and q>(5k+7)ℓ2ℓ−175, then the set S={a1,…,aq} is a finite range set with truncation level ℓ for admissible meromorphic functions on A(R0). This result extends the previous result on the finite range set (with truncation level ℓ=∞) for holomorphic functions on C of Fujimoto.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2022.126872