Optimal Liouville-type theorems for polyharmonic elliptic gradient systems and applications

In this paper, we investigate the following polyharmonic systems (d≥1) in RN,{(−Δ)du1=f1(u1,u2),(−Δ)du2=f2(u1,u2). By using the method of Rellich-Pohozaev type identities, Sobolev and interpolation inequalities on SN−1 and feedback and measure arguments, we prove Liouville-type theorems for nonnegat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2023-03, Vol.519 (1), p.126753, Article 126753
Hauptverfasser: Yu, Meng, Zhang, Zhitao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we investigate the following polyharmonic systems (d≥1) in RN,{(−Δ)du1=f1(u1,u2),(−Δ)du2=f2(u1,u2). By using the method of Rellich-Pohozaev type identities, Sobolev and interpolation inequalities on SN−1 and feedback and measure arguments, we prove Liouville-type theorems for nonnegative classical solutions under an optimal Sobolev growth condition on f1 and f2. Furthermore, we prove priori bounds, decay and singularity estimates of solutions. This system can be applied to noncooperative Schrödinger system with polyharmonic operator which arises from nonlinear optics and Bose-Einstein condensates.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2022.126753