Radial solutions for equations of Weingarten type
In this paper we study the linear Weingarten equation defined by the fully non-linear PDEadivDu1+|Du|2+bdetD2u(1+|Du|2)2=ϕ(11+|Du|2) in a domain Ω⊂R2, where ϕ∈C1([−1,1]) and a,b∈R. We approach the existence of radial solutions when Ω is a disk of small radius, giving an affirmative answer when the P...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2023-01, Vol.517 (1), p.126575, Article 126575 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the linear Weingarten equation defined by the fully non-linear PDEadivDu1+|Du|2+bdetD2u(1+|Du|2)2=ϕ(11+|Du|2) in a domain Ω⊂R2, where ϕ∈C1([−1,1]) and a,b∈R. We approach the existence of radial solutions when Ω is a disk of small radius, giving an affirmative answer when the PDE is of elliptic type. In the hyperbolic case we show that no radial solution exists, while in the parabolic case we find explicitly all the solutions. In the elliptic case we prove uniqueness and symmetry results concerning the Dirichlet problem of such equation. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2022.126575 |