Radial solutions for equations of Weingarten type

In this paper we study the linear Weingarten equation defined by the fully non-linear PDEadivDu1+|Du|2+bdetD2u(1+|Du|2)2=ϕ(11+|Du|2) in a domain Ω⊂R2, where ϕ∈C1([−1,1]) and a,b∈R. We approach the existence of radial solutions when Ω is a disk of small radius, giving an affirmative answer when the P...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2023-01, Vol.517 (1), p.126575, Article 126575
Hauptverfasser: Bueno, Antonio, López, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the linear Weingarten equation defined by the fully non-linear PDEadivDu1+|Du|2+bdetD2u(1+|Du|2)2=ϕ(11+|Du|2) in a domain Ω⊂R2, where ϕ∈C1([−1,1]) and a,b∈R. We approach the existence of radial solutions when Ω is a disk of small radius, giving an affirmative answer when the PDE is of elliptic type. In the hyperbolic case we show that no radial solution exists, while in the parabolic case we find explicitly all the solutions. In the elliptic case we prove uniqueness and symmetry results concerning the Dirichlet problem of such equation.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2022.126575