An operator version of the Korovkin theorem
We prove the following operator version of the Korovkin theorem: Let T be a compact Hausdorff space, Vn:C[a,b]→C(T) a sequence of linear positive operators and A:C[a,b]→C(T) a linear positive operator such that A(1)A(e2)=[A(e1)]2 and A(1)(t)>0, ∀t∈T. If limn→∞Vn(1)=A(1), limn→∞Vn(e1)=A(e1), lim...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2022-11, Vol.515 (1), p.126375, Article 126375 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the following operator version of the Korovkin theorem: Let T be a compact Hausdorff space, Vn:C[a,b]→C(T) a sequence of linear positive operators and A:C[a,b]→C(T) a linear positive operator such that A(1)A(e2)=[A(e1)]2 and A(1)(t)>0, ∀t∈T. If limn→∞Vn(1)=A(1), limn→∞Vn(e1)=A(e1), limn→∞Vn(e2)=A(e2) all uniformly on T, then for every f∈C[a,b], limn→∞Vn(f)=A(f) uniformly on T. Many and various examples are given. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2022.126375 |