Existence and concentration behavior of solutions for the logarithmic Schrödinger-Poisson system via penalization method
In this paper, we study the following logarithmic Schrödinger-Poisson system{−ε2Δu+V(x)u−ϕu=ulogu2,inR3,−ε2Δϕ=u2,inR3, where ε is a small positive parameter and V(x)∈C(R3,R). Under the local condition on potential V(x), we prove the existence of positive solution uε∈H1(R3) of above system for ε>...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2022-09, Vol.513 (2), p.126249, Article 126249 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the following logarithmic Schrödinger-Poisson system{−ε2Δu+V(x)u−ϕu=ulogu2,inR3,−ε2Δϕ=u2,inR3, where ε is a small positive parameter and V(x)∈C(R3,R). Under the local condition on potential V(x), we prove the existence of positive solution uε∈H1(R3) of above system for ε>0 small enough by combining the variational method with a penalization scheme. Moreover, we also investigate the concentration behavior of {uε} as ε→0. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2022.126249 |