A general approach to the study of the convergence of Picard iteration with an application to Halley's method for multiple zeros of analytic functions

In this paper, we define a new wide class of iteration functions and then we use it to prove a general convergence theorem that provides exact domain of initial approximations to guarantee the high Q-order of convergence of Picard iteration generated by this class of functions. As an application of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2022-09, Vol.513 (2), p.126238, Article 126238
1. Verfasser: Ivanov, Stoil I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we define a new wide class of iteration functions and then we use it to prove a general convergence theorem that provides exact domain of initial approximations to guarantee the high Q-order of convergence of Picard iteration generated by this class of functions. As an application of this theorem, we prove some local convergence theorems about the famous Halley's method for simple and multiple zeros of analytic functions. All obtained results are supplied with a priori and a posteriori error estimates as well as with assessments of the asymptotic error constants.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2022.126238