Asymptotic behavior in an attraction-repulsion chemotaxis system with nonlinear productions
This paper studies the semilinear attraction-repulsion chemotaxis system with nonlinear productions and logistic source{ut=Δu−χ∇⋅(u∇v)+ξ∇⋅(u∇w)+f(u),x∈Ω,t>0,0=Δv+αuk1−βv,x∈Ω,t>0,0=Δw+γuk2−δw,x∈Ω,t>0 under the non-flux boundary conditions and initial conditions, where Ω⊂Rn is a bounded domai...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2022-03, Vol.507 (1), p.125763, Article 125763 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies the semilinear attraction-repulsion chemotaxis system with nonlinear productions and logistic source{ut=Δu−χ∇⋅(u∇v)+ξ∇⋅(u∇w)+f(u),x∈Ω,t>0,0=Δv+αuk1−βv,x∈Ω,t>0,0=Δw+γuk2−δw,x∈Ω,t>0 under the non-flux boundary conditions and initial conditions, where Ω⊂Rn is a bounded domain with smooth boundary, the nonlinear productions for the attraction and repulsion chemicals are described via αuk1 and γuk2 respectively, and the logistic source f∈C2[0,∞) satisfying f(u)≤u(a−bus) with s>0,f(0)≥0. In the previous paper [3], when k1=max{k2,s}≥2n, Hong et al. have proved that if one of the following assumptions holds: k1=k2=s, k1n−2k1n(αχ−γξ)s, αχ−γξk2, k1n−2k1nαχk2, k1n−2k1nαχ=b; k1=k2>s, αχ−γξ=0, nk1(nk1−2) |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2021.125763 |