A converse landing theorem in parameter spaces
In this article, we prove that for several one-dimensional holomorphic families of holomorphic maps, in the parameter plane, there exists a local piece of a curve that lands at a given parabolic parameter, in the spirit of well-known results about the quadratic and the exponential families. We also...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2022-02, Vol.506 (2), p.125662, Article 125662 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we prove that for several one-dimensional holomorphic families of holomorphic maps, in the parameter plane, there exists a local piece of a curve that lands at a given parabolic parameter, in the spirit of well-known results about the quadratic and the exponential families. We also show that, under some assumptions, this general result partially answers the existence and landing questions of ray structures in the parameter planes for holomorphic families of transcendental entire maps. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2021.125662 |