Continuity of logarithmic capacity
We prove the continuity of logarithmic capacity under Hausdorff convergence of uniformly perfect planar sets. The continuity holds when the Hausdorff distance to the limit set tends to zero at sufficiently rapid rate, compared to the decay of the parameters involved in the uniformly perfect conditio...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2022-01, Vol.505 (1), p.125585, Article 125585 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove the continuity of logarithmic capacity under Hausdorff convergence of uniformly perfect planar sets. The continuity holds when the Hausdorff distance to the limit set tends to zero at sufficiently rapid rate, compared to the decay of the parameters involved in the uniformly perfect condition. The continuity may fail otherwise. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2021.125585 |