Homogeneous Dirichlet wavelets on the interval diagonalizing the derivative operator, and application to free-slip divergence-free wavelets
This paper presents a new construction of a homogeneous Dirichlet wavelet basis on the unit interval, linked by a diagonal differentiation-integration relation to a standard biorthogonal wavelet basis. This allows to compute the solution of Poisson equation by renormalizing the wavelet coefficients...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2022-01, Vol.505 (2), p.125479, Article 125479 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents a new construction of a homogeneous Dirichlet wavelet basis on the unit interval, linked by a diagonal differentiation-integration relation to a standard biorthogonal wavelet basis. This allows to compute the solution of Poisson equation by renormalizing the wavelet coefficients - as in Fourier domain but using locally supported basis functions with boundary conditions-, which yields a linear complexity O(N) for this problem. Another application concerns the construction of free-slip divergence-free wavelet bases of the hypercube, in general dimension, with an associated decomposition algorithm as simple as in the periodic case. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2021.125479 |