Homogeneous Dirichlet wavelets on the interval diagonalizing the derivative operator, and application to free-slip divergence-free wavelets

This paper presents a new construction of a homogeneous Dirichlet wavelet basis on the unit interval, linked by a diagonal differentiation-integration relation to a standard biorthogonal wavelet basis. This allows to compute the solution of Poisson equation by renormalizing the wavelet coefficients...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2022-01, Vol.505 (2), p.125479, Article 125479
Hauptverfasser: Kadri Harouna, Souleymane, Perrier, Valérie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper presents a new construction of a homogeneous Dirichlet wavelet basis on the unit interval, linked by a diagonal differentiation-integration relation to a standard biorthogonal wavelet basis. This allows to compute the solution of Poisson equation by renormalizing the wavelet coefficients - as in Fourier domain but using locally supported basis functions with boundary conditions-, which yields a linear complexity O(N) for this problem. Another application concerns the construction of free-slip divergence-free wavelet bases of the hypercube, in general dimension, with an associated decomposition algorithm as simple as in the periodic case.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2021.125479