On uniformly convex functions
Non-convex functions that yet satisfy a condition of uniform convexity for non-close points can arise in discrete constructions. We prove that this sort of discrete uniform convexity is inherited by the convex envelope, which is the key to obtain other remarkable properties such as the coercivity. O...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2022-01, Vol.505 (1), p.125442, Article 125442 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Non-convex functions that yet satisfy a condition of uniform convexity for non-close points can arise in discrete constructions. We prove that this sort of discrete uniform convexity is inherited by the convex envelope, which is the key to obtain other remarkable properties such as the coercivity. Our techniques allow to retrieve Enflo's uniformly convex renorming of super-reflexive Banach spaces as the regularization of a raw function built from trees. Among other applications, we provide a sharp estimation of the distance of a given function to the set of differences of Lipschitz convex functions. Finally, we prove the equivalence of several possible ways to quantify the super weakly noncompactness of a convex subset of a Banach space. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2021.125442 |