On strong forms of the Borel–Cantelli lemma and intermittent interval maps
We derive new variants of the quantitative Borel–Cantelli lemma and apply them to analysis of statistical properties for some dynamical systems. We consider intermittent maps of (0,1] which have absolutely continuous invariant probability measures. In particular, we prove that every sequence of inte...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2021-12, Vol.504 (2), p.125425, Article 125425 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We derive new variants of the quantitative Borel–Cantelli lemma and apply them to analysis of statistical properties for some dynamical systems. We consider intermittent maps of (0,1] which have absolutely continuous invariant probability measures. In particular, we prove that every sequence of intervals with left endpoints uniformly separated from zero is the strong Borel–Cantelli sequence with respect to such map and invariant measure. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2021.125425 |