On strong forms of the Borel–Cantelli lemma and intermittent interval maps

We derive new variants of the quantitative Borel–Cantelli lemma and apply them to analysis of statistical properties for some dynamical systems. We consider intermittent maps of (0,1] which have absolutely continuous invariant probability measures. In particular, we prove that every sequence of inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2021-12, Vol.504 (2), p.125425, Article 125425
1. Verfasser: Frolov, Andrei N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We derive new variants of the quantitative Borel–Cantelli lemma and apply them to analysis of statistical properties for some dynamical systems. We consider intermittent maps of (0,1] which have absolutely continuous invariant probability measures. In particular, we prove that every sequence of intervals with left endpoints uniformly separated from zero is the strong Borel–Cantelli sequence with respect to such map and invariant measure.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2021.125425