On a class of nonlocal evolution equations with the p[∇u]-Laplace operator

We study the homogeneous Dirichlet problem for the class of singular parabolic equationsut−div(|∇u|p[∇u]−2∇u)=fin Ω×(0,T), where Ω⊂Rd, d≥2, is a smooth domain. The exponent p nonlocally depends on the gradient of the solution: p is a given function defined byp[∇u]≡p(l(|∇u|)),l(|s|)=∫Ω|s|αdx with a c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2021-09, Vol.501 (2), p.125221, Article 125221
Hauptverfasser: Antontsev, Stanislav, Kuznetsov, Ivan, Shmarev, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the homogeneous Dirichlet problem for the class of singular parabolic equationsut−div(|∇u|p[∇u]−2∇u)=fin Ω×(0,T), where Ω⊂Rd, d≥2, is a smooth domain. The exponent p nonlocally depends on the gradient of the solution: p is a given function defined byp[∇u]≡p(l(|∇u|)),l(|s|)=∫Ω|s|αdx with a constant α∈(1,2]. We find sufficient conditions on the data that guarantee global in time existence and uniqueness of a strong solution of the problem. It is shown that the problem has a solution if either u0 and f, or p′(s) are sufficiently small.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2021.125221