On a class of nonlocal evolution equations with the p[∇u]-Laplace operator
We study the homogeneous Dirichlet problem for the class of singular parabolic equationsut−div(|∇u|p[∇u]−2∇u)=fin Ω×(0,T), where Ω⊂Rd, d≥2, is a smooth domain. The exponent p nonlocally depends on the gradient of the solution: p is a given function defined byp[∇u]≡p(l(|∇u|)),l(|s|)=∫Ω|s|αdx with a c...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2021-09, Vol.501 (2), p.125221, Article 125221 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the homogeneous Dirichlet problem for the class of singular parabolic equationsut−div(|∇u|p[∇u]−2∇u)=fin Ω×(0,T), where Ω⊂Rd, d≥2, is a smooth domain. The exponent p nonlocally depends on the gradient of the solution: p is a given function defined byp[∇u]≡p(l(|∇u|)),l(|s|)=∫Ω|s|αdx with a constant α∈(1,2]. We find sufficient conditions on the data that guarantee global in time existence and uniqueness of a strong solution of the problem. It is shown that the problem has a solution if either u0 and f, or p′(s) are sufficiently small. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2021.125221 |