Lower bounds on the radius of analyticity for a system of modified KdV equations

The initial value problem for a system of modified Korteweg-deVries equations with data that are analytic on R and having uniform radius of analyticity r0 is studied. After proving an analytic version of known trilinear estimates in Sobolev spaces, local well-posedness is established and persistence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2021-05, Vol.497 (2), p.124917, Article 124917
Hauptverfasser: Figueira, Renata O., Himonas, A. Alexandrou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The initial value problem for a system of modified Korteweg-deVries equations with data that are analytic on R and having uniform radius of analyticity r0 is studied. After proving an analytic version of known trilinear estimates in Sobolev spaces, local well-posedness is established and persistence of the radius of spatial analyticity is shown till some time T0. Then, for time t≥T0 it is proved that the radius of spatial analyticity is bounded from below by ct−(2+ε), for any ε>0.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2020.124917