Thresholds for low regularity solutions to wave equations with structural damping

We study the asymptotic behavior of solutions to wave equations with the structural damping termutt−Δu+Δ2ut=0,u(0,x)=u0(x),ut(0,x)=u1(x), in the whole space. New thresholds are reported in this paper that indicate which of the diffusion wave property and the non-diffusive structure dominates in low...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2021-02, Vol.494 (2), p.124669, Article 124669
Hauptverfasser: Fukushima, Tomonori, Ikehata, Ryo, Michihisa, Hironori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the asymptotic behavior of solutions to wave equations with the structural damping termutt−Δu+Δ2ut=0,u(0,x)=u0(x),ut(0,x)=u1(x), in the whole space. New thresholds are reported in this paper that indicate which of the diffusion wave property and the non-diffusive structure dominates in low regularity cases. We develop to that end the previous authors' research [2] where they have proposed a threshold that expresses whether the parabolic-like property or the wave-like property strongly appears in the solution to some regularity-loss type dissipative wave equation.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2020.124669