Thresholds for low regularity solutions to wave equations with structural damping
We study the asymptotic behavior of solutions to wave equations with the structural damping termutt−Δu+Δ2ut=0,u(0,x)=u0(x),ut(0,x)=u1(x), in the whole space. New thresholds are reported in this paper that indicate which of the diffusion wave property and the non-diffusive structure dominates in low...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2021-02, Vol.494 (2), p.124669, Article 124669 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the asymptotic behavior of solutions to wave equations with the structural damping termutt−Δu+Δ2ut=0,u(0,x)=u0(x),ut(0,x)=u1(x), in the whole space. New thresholds are reported in this paper that indicate which of the diffusion wave property and the non-diffusive structure dominates in low regularity cases. We develop to that end the previous authors' research [2] where they have proposed a threshold that expresses whether the parabolic-like property or the wave-like property strongly appears in the solution to some regularity-loss type dissipative wave equation. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2020.124669 |