Semilinear mixed problems in exterior domains for σ-evolution equations with friction and coefficients depending on spatial variables

The main purpose of this paper is to investigate decay estimates for solutions to the Cauchy problemutt+a1(x)(−Δ)σu+aut=0,u(0,x)=u0(x),ut(0,x)=u1(x)forx∈Rn, as well as the estimates for solutions to the corresponding Cauchy-Dirichlet problem in an exterior domain Ω⊂Rn. Here a is a positive constant....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2021-02, Vol.494 (1), p.124587, Article 124587
Hauptverfasser: Pham, Trieu Duong, Reissig, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main purpose of this paper is to investigate decay estimates for solutions to the Cauchy problemutt+a1(x)(−Δ)σu+aut=0,u(0,x)=u0(x),ut(0,x)=u1(x)forx∈Rn, as well as the estimates for solutions to the corresponding Cauchy-Dirichlet problem in an exterior domain Ω⊂Rn. Here a is a positive constant. The coefficient a1=a1(x) is supposed to be continuous and positive on the closure Ω‾. The parameter σ∈(0,1) brings to the model the so-called Levi-stable behavior for the corresponding diffusion stochastic process. Finally, we show the global (in time) existence of energy solutions from evolution spaces to the semilinear modelsutt+a1(x)(−Δ)σu+aut=|ut|p,u(0,x)=u0(x),ut(0,x)=u1(x), in domain (0,∞)×Ω with arbitrarily small initial data.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2020.124587