An asymptotic analysis of the Fourier-Laplace transforms of certain oscillatory functions
We study the family of Fourier-Laplace transformsFα,β(z)=F.p.∫0∞tβexp(itα−izt)dt,Imz1 and β∈C, where Hadamard finite part is used to regularize the integral when Reβ≤−1. We prove that each Fα,β has analytic continuation to the whole complex plane and determine its asymptotics along any line through...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2021-02, Vol.494 (1), p.124450, Article 124450 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the family of Fourier-Laplace transformsFα,β(z)=F.p.∫0∞tβexp(itα−izt)dt,Imz1 and β∈C, where Hadamard finite part is used to regularize the integral when Reβ≤−1. We prove that each Fα,β has analytic continuation to the whole complex plane and determine its asymptotics along any line through the origin. We also apply our ideas to show that some of these functions provide concrete extremal examples for the Wiener-Ikehara theorem and a quantified version of the Ingham-Karamata theorem, supplying new simple and constructive proofs of optimality results for these complex Tauberian theorems. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2020.124450 |