Graph rigidity for unitarily invariant matrix norms
A rigidity theory is developed for bar-joint frameworks in linear matrix spaces endowed with a unitarily invariant matrix norm. Analogues of Maxwell's counting criteria are obtained and minimally rigid matrix frameworks are shown to belong to the matroidal class of (k,l)-sparse graphs for suita...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2020-11, Vol.491 (2), p.124353, Article 124353 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A rigidity theory is developed for bar-joint frameworks in linear matrix spaces endowed with a unitarily invariant matrix norm. Analogues of Maxwell's counting criteria are obtained and minimally rigid matrix frameworks are shown to belong to the matroidal class of (k,l)-sparse graphs for suitable k and l. An edge-colouring technique is developed to characterise infinitesimal rigidity for product norms and then applied to show that the graph of a minimally rigid bar-joint framework in the space of 2×2 symmetric (respectively, hermitian) matrices with the trace norm admits an edge-disjoint packing consisting of a (Euclidean) rigid graph and a spanning tree. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2020.124353 |