Graph rigidity for unitarily invariant matrix norms

A rigidity theory is developed for bar-joint frameworks in linear matrix spaces endowed with a unitarily invariant matrix norm. Analogues of Maxwell's counting criteria are obtained and minimally rigid matrix frameworks are shown to belong to the matroidal class of (k,l)-sparse graphs for suita...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2020-11, Vol.491 (2), p.124353, Article 124353
Hauptverfasser: Kitson, D., Levene, R.H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A rigidity theory is developed for bar-joint frameworks in linear matrix spaces endowed with a unitarily invariant matrix norm. Analogues of Maxwell's counting criteria are obtained and minimally rigid matrix frameworks are shown to belong to the matroidal class of (k,l)-sparse graphs for suitable k and l. An edge-colouring technique is developed to characterise infinitesimal rigidity for product norms and then applied to show that the graph of a minimally rigid bar-joint framework in the space of 2×2 symmetric (respectively, hermitian) matrices with the trace norm admits an edge-disjoint packing consisting of a (Euclidean) rigid graph and a spanning tree.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2020.124353