A note on equivariant biharmonic maps and stable biharmonic maps
In this note, we generalize biharmonic equation for rotationally symmetric maps ([4], [20], [12]) to equivariant maps between model spaces and use it to give a complete classification of rotationally symmetric conformal biharmonic maps from a 4-dimensional space form into a 4-dimensional model space...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2020-11, Vol.491 (1), p.124301, Article 124301 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we generalize biharmonic equation for rotationally symmetric maps ([4], [20], [12]) to equivariant maps between model spaces and use it to give a complete classification of rotationally symmetric conformal biharmonic maps from a 4-dimensional space form into a 4-dimensional model space. We also give an improved second variation formula for biharmonic maps into a space form and use it to prove that there exists no stable proper biharmonic map with constant square norm of tension field from a compact Riemannian manifold without boundary into a space form of positive sectional curvature. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2020.124301 |