A note on equivariant biharmonic maps and stable biharmonic maps

In this note, we generalize biharmonic equation for rotationally symmetric maps ([4], [20], [12]) to equivariant maps between model spaces and use it to give a complete classification of rotationally symmetric conformal biharmonic maps from a 4-dimensional space form into a 4-dimensional model space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2020-11, Vol.491 (1), p.124301, Article 124301
1. Verfasser: Ou, Ye-Lin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, we generalize biharmonic equation for rotationally symmetric maps ([4], [20], [12]) to equivariant maps between model spaces and use it to give a complete classification of rotationally symmetric conformal biharmonic maps from a 4-dimensional space form into a 4-dimensional model space. We also give an improved second variation formula for biharmonic maps into a space form and use it to prove that there exists no stable proper biharmonic map with constant square norm of tension field from a compact Riemannian manifold without boundary into a space form of positive sectional curvature.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2020.124301