An optimal pointwise Morrey-Sobolev inequality

Let Ω be a bounded, smooth domain of RN, N≥1. For each p>N we study the optimal function s=sp in the pointwise inequality|v(x)|≤s(x)‖∇v‖Lp(Ω),∀(x,v)∈Ω‾×W01,p(Ω). We show that sp∈C00,1−(N/p)(Ω‾) and that sp converges pointwise to the distance function to the boundary, as p→∞. Moreover, we prove th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2020-09, Vol.489 (1), p.124143, Article 124143
Hauptverfasser: Ercole, Grey, Pereira, Gilberto A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Ω be a bounded, smooth domain of RN, N≥1. For each p>N we study the optimal function s=sp in the pointwise inequality|v(x)|≤s(x)‖∇v‖Lp(Ω),∀(x,v)∈Ω‾×W01,p(Ω). We show that sp∈C00,1−(N/p)(Ω‾) and that sp converges pointwise to the distance function to the boundary, as p→∞. Moreover, we prove that if Ω is convex, then sp is concave and has a unique maximum point.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2020.124143