An optimal pointwise Morrey-Sobolev inequality
Let Ω be a bounded, smooth domain of RN, N≥1. For each p>N we study the optimal function s=sp in the pointwise inequality|v(x)|≤s(x)‖∇v‖Lp(Ω),∀(x,v)∈Ω‾×W01,p(Ω). We show that sp∈C00,1−(N/p)(Ω‾) and that sp converges pointwise to the distance function to the boundary, as p→∞. Moreover, we prove th...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2020-09, Vol.489 (1), p.124143, Article 124143 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Ω be a bounded, smooth domain of RN, N≥1. For each p>N we study the optimal function s=sp in the pointwise inequality|v(x)|≤s(x)‖∇v‖Lp(Ω),∀(x,v)∈Ω‾×W01,p(Ω). We show that sp∈C00,1−(N/p)(Ω‾) and that sp converges pointwise to the distance function to the boundary, as p→∞. Moreover, we prove that if Ω is convex, then sp is concave and has a unique maximum point. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2020.124143 |