Phase-isometries on real normed spaces

We say that a map f from a normed space X to another normed space Y is a phase-isometry if the equality{‖f(x)+f(y)‖,‖f(x)−f(y)‖}={‖x+y‖,‖x−y‖} holds for all x,y∈X. A normed space X is said to have the Wigner property if for any normed space Y and every surjective phase-isometry f:X→Y, there exists a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2020-08, Vol.488 (1), p.124058, Article 124058
Hauptverfasser: Tan, Dongni, Huang, Xujian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We say that a map f from a normed space X to another normed space Y is a phase-isometry if the equality{‖f(x)+f(y)‖,‖f(x)−f(y)‖}={‖x+y‖,‖x−y‖} holds for all x,y∈X. A normed space X is said to have the Wigner property if for any normed space Y and every surjective phase-isometry f:X→Y, there exists a phase function ε:X→{−1,1} such that ε⋅f is a linear isometry. We show that all smooth normed spaces, L∞(Γ)-type spaces and ℓ1(Γ)-spaces enjoy this property.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2020.124058