Phase-isometries on real normed spaces
We say that a map f from a normed space X to another normed space Y is a phase-isometry if the equality{‖f(x)+f(y)‖,‖f(x)−f(y)‖}={‖x+y‖,‖x−y‖} holds for all x,y∈X. A normed space X is said to have the Wigner property if for any normed space Y and every surjective phase-isometry f:X→Y, there exists a...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2020-08, Vol.488 (1), p.124058, Article 124058 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We say that a map f from a normed space X to another normed space Y is a phase-isometry if the equality{‖f(x)+f(y)‖,‖f(x)−f(y)‖}={‖x+y‖,‖x−y‖} holds for all x,y∈X. A normed space X is said to have the Wigner property if for any normed space Y and every surjective phase-isometry f:X→Y, there exists a phase function ε:X→{−1,1} such that ε⋅f is a linear isometry. We show that all smooth normed spaces, L∞(Γ)-type spaces and ℓ1(Γ)-spaces enjoy this property. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2020.124058 |