Unitary equivalence of operator-valued multishifts
We systematically study various aspects of operator-valued multishifts. Beginning with basic properties, we show that the class of multishifts on the directed Cartesian product of rooted directed trees is contained in that of operator-valued multishifts. Further, we establish circularity, analyticit...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2020-07, Vol.487 (2), p.124032, Article 124032 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We systematically study various aspects of operator-valued multishifts. Beginning with basic properties, we show that the class of multishifts on the directed Cartesian product of rooted directed trees is contained in that of operator-valued multishifts. Further, we establish circularity, analyticity and wandering subspace property of these multishifts. In the rest part of the paper, we study the function theoretic behaviour of operator-valued multishifts. We determine the bounded point evaluation, reproducing kernel structure and the unitary equivalence of operator-valued multishifts with invertible operator weights. In contrast with a result of Lubin, it appears that the set of all bounded point evaluations of an operator-valued multishift may be properly contained in the joint point spectrum of the adjoint of underlying multishift. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2020.124032 |