A generalized spectral theory for continuous metrics on compact Riemann surfaces

We extend the spectral theory of generalized Laplacians to continuous metrics on compact Riemann surfaces. We define a holomorphic analytic torsion for any continuous metric. As an application of this theory, we partly recover some results of the theory of Bessel functions, for instance, Lommel'...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical analysis and applications 2020-01, Vol.481 (1), p.123456, Article 123456
1. Verfasser: Hajli, Mounir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We extend the spectral theory of generalized Laplacians to continuous metrics on compact Riemann surfaces. We define a holomorphic analytic torsion for any continuous metric. As an application of this theory, we partly recover some results of the theory of Bessel functions, for instance, Lommel's theorem on the reality of the zeros of Bessel functions of order exceeding −1.
ISSN:0022-247X
1096-0813
DOI:10.1016/j.jmaa.2019.123456