A generalized spectral theory for continuous metrics on compact Riemann surfaces
We extend the spectral theory of generalized Laplacians to continuous metrics on compact Riemann surfaces. We define a holomorphic analytic torsion for any continuous metric. As an application of this theory, we partly recover some results of the theory of Bessel functions, for instance, Lommel'...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2020-01, Vol.481 (1), p.123456, Article 123456 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We extend the spectral theory of generalized Laplacians to continuous metrics on compact Riemann surfaces. We define a holomorphic analytic torsion for any continuous metric. As an application of this theory, we partly recover some results of the theory of Bessel functions, for instance, Lommel's theorem on the reality of the zeros of Bessel functions of order exceeding −1. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2019.123456 |