Tail probability of randomly weighted sums of dependent subexponential random variables with applications to risk theory
Following the work of Cheng and Cheng (2018) [6], we reexamine the tail probability of randomly weighted sums of dependent subexponential random variables. Precisely speaking, let {Xn,n≥1} be real-valued and commonly distributed random variables satisfying a general dependence structure proposed in...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical analysis and applications 2019-12, Vol.480 (1), p.123389, Article 123389 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Following the work of Cheng and Cheng (2018) [6], we reexamine the tail probability of randomly weighted sums of dependent subexponential random variables. Precisely speaking, let {Xn,n≥1} be real-valued and commonly distributed random variables satisfying a general dependence structure proposed in Ko and Tang (2008) [14], and random weights {θn,n≥1} be positive, bounded above and arbitrarily dependent random variables, but independent of {Xn,n≥1}. Under some mild conditions, we achieve the asymptotic behavior of tail probability for both randomly weighted finite and infinite sums. Finally, an application of the obtained results to a nonstandard continuous-time renewal risk model is proposed. |
---|---|
ISSN: | 0022-247X 1096-0813 |
DOI: | 10.1016/j.jmaa.2019.123389 |