Effects of environmental temperature on the thermal runaway of lithium-ion batteries during charging process

Lithium-ion batteries with relatively narrow operating temperature range have provoked concerns regarding the safety of LIBs. In this work, a series of experiments were conducted to explore the thermal runaway (TR) behaviors of charging batteries in a high/low temperature test chamber. The effects o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of loss prevention in the process industries 2023-07, Vol.83, p.105084, Article 105084
Hauptverfasser: Meng, Di, Wang, Xuehui, Chen, Mingyi, Wang, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Lithium-ion batteries with relatively narrow operating temperature range have provoked concerns regarding the safety of LIBs. In this work, a series of experiments were conducted to explore the thermal runaway (TR) behaviors of charging batteries in a high/low temperature test chamber. The effects of charging rates (0.5 C, 1 C, 2 C, and 3 C), and ambient temperature (2 °C, 32 °C and 56 °C) are comprehensively investigated. The results indicate that the cell exhibited greater thermal hazard at the high charging rate and ambient temperature conditions. As the charging rate increased from 0.5 C to 3 C, more lithium intercalated in the anode prompt the TR triggered in advance, the TR onset temperature decreased from 297.5 °C to 264.7 °C. In addition, the charging time decreased with the elevated ambient temperature, resulting in a relatively higher TR onset temperature and lower maximum temperature, and the average TR critical time declined by 115–143 s. Finally, the TR required less heat accumulation with increasing of charging rate and ambient temperature, and the heat generation of side reaction played a substantial role that accounted for approximately 54%∼63%. These results provide an insight into the charging cell thermal runaway behaviors in complex operation environments and deliver valuable guidance for improving the safety of cell operation. •The charging cell safety is affected by charging rate and ambient temperature.•Thermal runaway behavior under different charging rates and temperatures is studied.•Thermal runaway heat generation mechanism within the charging cell is revealed.•High charging rate and ambient temperature condition present higher thermal hazard.
ISSN:0950-4230
DOI:10.1016/j.jlp.2023.105084