Spatially seamless and temporally continuous assessment on compound flood risk in Hong Kong

•Ensemble machine learning and Bayesian inference enable spatial-temporal assessment on compound flood risk.•Significant positive correlations are identified among extreme storm surges, sea level rise, and heavy rainfall.•Simultaneous extremes significantly increase flood return levels for rainfall...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology (Amsterdam) 2024-12, Vol.645, p.132217, Article 132217
Hauptverfasser: You, Jiewen, Wang, Shuo, Zhang, Boen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Ensemble machine learning and Bayesian inference enable spatial-temporal assessment on compound flood risk.•Significant positive correlations are identified among extreme storm surges, sea level rise, and heavy rainfall.•Simultaneous extremes significantly increase flood return levels for rainfall and storm surges.•Spatially resolved maps offer implications for managing compound flood risk in low-lying coastal areas. Compound flooding results from the simultaneous occurrence of extreme storm surges, sea level rise, and heavy rainfall. These events often lead to impacts significantly more severe than those caused by any individual flood-inducing factor alone. However, the limited and sparse data from tidal gauges hampers precise risk assessment at ungauged sites in coastal cities. Our study addresses this gap by integrating ensemble machine learning with Bayesian inference, offering a comprehensive spatial–temporal analysis of compound flood risk from 1979 to 2022 in Hong Kong. We developed an ensemble machine learning approach within the Bayesian hierarchical modeling framework to achieve spatial–temporal continuity in the estimation of extreme storm surges and mean sea level at sites without tidal gauge stations. Results show a significant yearly increase in maximum storm surge levels by 3 mm and a significant rise in mean sea level of 25 mm per decade in Hong Kong. Our analysis also indicates a significant increase in daily heavy rainfall intensity. Furthermore, in 14.54 % of cases, extreme storm surges coincided with heavy rainfall, while 13.69 % of heavy rainfall events occurred alongside extreme sea level conditions. The copula-based joint analysis reveals significant positive correlations among these extreme events. Our findings further reveal that the return level for a 100-year heavy rainfall event increases dramatically from 126.36 mm in the univariate case to 261.16 mm in the trivariate scenario, underlining the escalated risk associated with compound flooding. Similarly, for storm surge extremes, trivariate analysis reveals elevated risk during compound flood events, with the return level rising from 1.18 m (univariate scenario) to 1.40 m (trivariate scenario) for a 100-year return period. These spatial–temporal maps and comprehensive compound flood risk assessments offer crucial insights for addressing the multi-hazard flood risk in coastal urban areas.
ISSN:0022-1694
DOI:10.1016/j.jhydrol.2024.132217