Changes in the m6A RNA methylome accompany the promotion of soybean root growth by rhizobia under cadmium stress
Cadmium (Cd) is the most widely distributed heavy metal pollutant in soil and has significant negative effects on crop yields and human health. Rhizobia can enhance soybean growth in the presence of heavy metals, and the legume–rhizobia symbiosis has been used to promote heavy-metal phytoremediation...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2023-01, Vol.441, p.129843, Article 129843 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cadmium (Cd) is the most widely distributed heavy metal pollutant in soil and has significant negative effects on crop yields and human health. Rhizobia can enhance soybean growth in the presence of heavy metals, and the legume–rhizobia symbiosis has been used to promote heavy-metal phytoremediation, but much remains to be learned about the molecular networks that underlie these effects. Here, we demonstrated that soybean root growth was strongly suppressed after seven days of Cd exposure but that the presence of rhizobia largely eliminated this effect, even prior to nodule development. Moreover, rhizobia did not appear to promote root growth by limiting plant Cd uptake: seedlings with and without rhizobia had similar root Cd concentrations. Previous studies have demonstrated a role for m6A RNA methylation in the response of rice and barley to Cd stress. We therefore performed transcriptome-wide m6A methylation profiling to investigate changes in the soybean RNA methylome in response to Cd with and without rhizobia. Here, we provide some of the first data on transcriptome-wide m6a RNA methylation patterns in soybean; m6A modifications were concentrated at the 3′ UTR of transcripts and showed a positive relationship with transcript abundance. Transcriptome-wide m6A RNA methylation peaks increased in the presence of Cd, and the integration of m6A methylome and transcriptome results enabled us to identify 154 genes whose transcripts were both differentially methylated and differentially expressed in response to Cd stress. Annotation results suggested that these genes were associated with Ca2+ homeostasis, ROS pathways, polyamine metabolism, MAPK signaling, hormones, and biotic stress responses. There were 176 differentially methylated and expressed transcripts under Cd stress in the presence of rhizobia. In contrast to the Cd-only gene set, they were also enriched in genes related to auxin, jasmonic acid, and brassinosteroids, as well as abiotic stress tolerance. They contained fewer genes related to Ca2+ homeostasis and also included candidates with known functions in the legume–rhizobia symbiosis. These findings offer new insights into how rhizobia promote soybean root growth under Cd stress; they provide candidate genes for research on plant heavy metal responses and for the use of legumes in phytoremediation.
[Display omitted]
•Soybean root growth was suppressed by Cd, but rhizobia largely eliminated this effect, even prior to nodule development.•Rhizobia |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2022.129843 |