Effects of S-metolachlor on wheat (Triticum aestivum L.) seedling root exudates and the rhizosphere microbiome
S-metolachlor (S-ME) is a common chloroacetanilide herbicide. Here, we investigated the effects of S-ME on wheat seedling growth and explored via metabolomics the driver through which S-ME changes the rhizosphere microbiome. The results indicated that 4 mg/kg S-ME had a strong inhibitory effect on p...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2021-06, Vol.411, p.125137, Article 125137 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | S-metolachlor (S-ME) is a common chloroacetanilide herbicide. Here, we investigated the effects of S-ME on wheat seedling growth and explored via metabolomics the driver through which S-ME changes the rhizosphere microbiome. The results indicated that 4 mg/kg S-ME had a strong inhibitory effect on plant growth by inducing hydrogen peroxide (H2O2) levels. The richness of the rhizosphere microbiome markedly decreased after S-ME treatment, although the abundance of some potential beneficial rhizobacteria, such as Rhizobiaceae and Burkholderiaceae, increased suggesting that plants recruited potential beneficial microorganisms to resist S-ME-induced stress. Spearman correlation analysis revealed that Rhizobiaceae and Burkholderiaceae were positively correlated with organic acids secreted by plants after S-ME treatment, implying that potential beneficial microorganisms may be attracted mainly by organic acids. Our results demonstrated the phytotoxicity of S-ME on crop growth and indicated both that S-ME could influence rhizosphere microorganism abundance and that recruitment of potential beneficial microorganisms could be the result of root exudate regulation.
[Display omitted]
•S-metolachlor (S-ME) had a strong inhibitory effect on plant growth.•Plants recruited beneficial microorganisms to resist S-ME-induced stress.•Beneficial microorganisms of rhizosphere may be attracted mainly by organic acids. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2021.125137 |