Horizontal gene transfer is a key determinant of antibiotic resistance genes profiles during chicken manure composting with the addition of biochar and zeolite

Livestock manure is an important reservoir of antibiotic resistance genes (ARGs). Biochar and zeolite are commonly used to improve the quality of compost, however, little is known about the impacts of these additives on the fate of ARGs during composting and the underlying mechanisms involved. In th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of hazardous materials 2021-04, Vol.408, p.124883, Article 124883
Hauptverfasser: Zhou, Guixiang, Qiu, Xiuwen, Wu, Xiaoyu, Lu, Shunbao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Livestock manure is an important reservoir of antibiotic resistance genes (ARGs). Biochar and zeolite are commonly used to improve the quality of compost, however, little is known about the impacts of these additives on the fate of ARGs during composting and the underlying mechanisms involved. In this study, zeolite (ZL), biochar (BC), or zeolite and biochar (ZB) simultaneously were added to chicken manure compost to evaluate their effects on the ARGs patterns. After composting, the abundance of ARGs reduced by 92.6% in control, while the reductions were 95.9%, 98.7% and 98.2% for ZL, BC, ZB, respectively. Co-occurrence network analysis indicated that the potential hosts for most ARGs were predominantly affiliated to Firmicutes such as Lactobacillus and Fastidiosipila. Furthermore, shifts in ARGs were significantly correlated with class 1 integrase gene (intI1), and structural equation models further revealed that intI1 gene contributed most (standardized total effect 0.92) to the ARGs-removal, which was trigged by horizontal gene transfer. Together these results suggest that the addition of zeolite and biochar mitigate the accumulation and spread of ARGs during composting, and the crucial role of horizontal gene transfer (HGT) on the behaviors of ARGs should pay more attention to in the future. [Display omitted] •Biochar and zeolite reduce the relative abundance of ARGs in composted manure.•Composting properties and bacterial community influence the pattern of ARGs.•The potential hosts for most ARGs are mainly affiliated to Firmicutes.•Horizontal gene transfer is a key determinant of ARGs profiles during composting.
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2020.124883