Protonation stabilized high As/F mobility red mud for Pb/As polluted soil remediation
The hazardous red mud (RM) with high As/F mobility and heavy metal contaminated soil have constituted severe environmental threats. This work demonstrates a “waste to eco-material” strategy through a reliable and low-cost protonation approach to eliminate the As/F leaching risk of RM, and then recyc...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2021-02, Vol.404 (Pt B), p.124143, Article 124143 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The hazardous red mud (RM) with high As/F mobility and heavy metal contaminated soil have constituted severe environmental threats. This work demonstrates a “waste to eco-material” strategy through a reliable and low-cost protonation approach to eliminate the As/F leaching risk of RM, and then recycle it as heavy metal passivators for Pb/As polluted soil remediation. The As/F anions have been immobilized by the protonated Fe/Al (hydr)oxides within RM via the formation of stable As/F compounds during the protonation process, which satisfies the requirement by the World Health Organization (As leaching |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2020.124143 |