A Whitney extension problem for manifolds

The purpose of this paper is to address a manifold-based version of Whitney's extension problem: Given a compact set E⊂Rn, how can we tell if there exists a d-dimensional, Cm-smooth manifold M⊃E? We provide an answer for compact manifolds with boundary in terms of a Glaeser refinement much like...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2025-03, Vol.288 (5), p.110753, Article 110753
1. Verfasser: O'Neill, Kevin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this paper is to address a manifold-based version of Whitney's extension problem: Given a compact set E⊂Rn, how can we tell if there exists a d-dimensional, Cm-smooth manifold M⊃E? We provide an answer for compact manifolds with boundary in terms of a Glaeser refinement much like that used in the solution of the classical Whitney extension problem and a topological condition. This condition is the existence of a continuous selection for Grassmannian-valued functions, meant to reflect the collection of possible tangent spaces. We demonstrate the necessity of this condition in general and its non-redundancy in an example, while also showing it need not be checked when d=1.
ISSN:0022-1236
DOI:10.1016/j.jfa.2024.110753