Constructing non-AMNM weighted convolution algebras for every semilattice of infinite breadth
The AMNM property for commutative Banach algebras is a form of Ulam stability for multiplicative linear functionals. We show that on any semilattice of infinite breadth, one may construct a weight for which the resulting weighted convolution algebra fails to have the AMNM property. Our work is the c...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2025-02, Vol.288 (3), p.110735, Article 110735 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The AMNM property for commutative Banach algebras is a form of Ulam stability for multiplicative linear functionals. We show that on any semilattice of infinite breadth, one may construct a weight for which the resulting weighted convolution algebra fails to have the AMNM property. Our work is the culmination of a trilogy started in [4] and continued in [5]. In particular, we obtain a refinement of the main result of [5], by establishing a dichotomy for union-closed set systems that has a Ramsey-theoretic flavour. |
---|---|
ISSN: | 0022-1236 |
DOI: | 10.1016/j.jfa.2024.110735 |