Fourier inequalities in Morrey and Campanato spaces

We study norm inequalities for the Fourier transform, namely,(0.1)‖fˆ‖Xp,qλ≲‖f‖Y, where X is either a Morrey or Campanato space and Y is an appropriate function space. In the case of the Morrey space we sharpen the estimate ‖fˆ‖Mp,qλ≲‖f‖Ls′,q, s≥2, 1s=1p−λn. We also show that (0.1) does not hold whe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2024-10, Vol.287 (7), p.110522, Article 110522
Hauptverfasser: Debernardi Pinos, Alberto, Nursultanov, Erlan, Tikhonov, Sergey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study norm inequalities for the Fourier transform, namely,(0.1)‖fˆ‖Xp,qλ≲‖f‖Y, where X is either a Morrey or Campanato space and Y is an appropriate function space. In the case of the Morrey space we sharpen the estimate ‖fˆ‖Mp,qλ≲‖f‖Ls′,q, s≥2, 1s=1p−λn. We also show that (0.1) does not hold when both X and Y are Morrey spaces. If X is a Campanato space, we prove that (0.1) holds for Y being the truncated Lebesgue space.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2024.110522