Fourier inequalities in Morrey and Campanato spaces
We study norm inequalities for the Fourier transform, namely,(0.1)‖fˆ‖Xp,qλ≲‖f‖Y, where X is either a Morrey or Campanato space and Y is an appropriate function space. In the case of the Morrey space we sharpen the estimate ‖fˆ‖Mp,qλ≲‖f‖Ls′,q, s≥2, 1s=1p−λn. We also show that (0.1) does not hold whe...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2024-10, Vol.287 (7), p.110522, Article 110522 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study norm inequalities for the Fourier transform, namely,(0.1)‖fˆ‖Xp,qλ≲‖f‖Y, where X is either a Morrey or Campanato space and Y is an appropriate function space. In the case of the Morrey space we sharpen the estimate ‖fˆ‖Mp,qλ≲‖f‖Ls′,q, s≥2, 1s=1p−λn. We also show that (0.1) does not hold when both X and Y are Morrey spaces.
If X is a Campanato space, we prove that (0.1) holds for Y being the truncated Lebesgue space. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2024.110522 |