Fractional operators as traces of operator-valued curves
We relate non integer powers Ls, s>0 of a given (unbounded) positive self-adjoint operator L in a real separable Hilbert space H with a certain differential operator of order 2⌈s⌉, acting on even curves R→H. This extends the results by Caffarelli–Silvestre and Stinga–Torrea regarding the characte...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2024-07, Vol.287 (2), p.110443, Article 110443 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We relate non integer powers Ls, s>0 of a given (unbounded) positive self-adjoint operator L in a real separable Hilbert space H with a certain differential operator of order 2⌈s⌉, acting on even curves R→H. This extends the results by Caffarelli–Silvestre and Stinga–Torrea regarding the characterization of fractional powers of differential operators via an extension problem. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2024.110443 |