Embeddings of von Neumann algebras into uniform Roe algebras and quasi-local algebras

We study which von Neumann algebras can be embedded into uniform Roe algebras and quasi-local algebras associated to a uniformly locally finite metric space X. Under weak assumptions, these C⁎-algebras contain embedded copies of ∏kMnk(C) for any bounded countable (possibly finite) collection (nk)k o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2024-01, Vol.286 (1), p.110186, Article 110186
Hauptverfasser: Baudier, Florent P., Braga, Bruno M., Farah, Ilijas, Vignati, Alessandro, Willett, Rufus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study which von Neumann algebras can be embedded into uniform Roe algebras and quasi-local algebras associated to a uniformly locally finite metric space X. Under weak assumptions, these C⁎-algebras contain embedded copies of ∏kMnk(C) for any bounded countable (possibly finite) collection (nk)k of natural numbers; we aim to show that they cannot contain any other von Neumann algebras. One of our main results shows that L∞[0,1] does not embed into any of those algebras, even by a not-necessarily-normal ⁎-homomorphism. In particular, it follows from the structure theory of von Neumann algebras that any von Neumann algebra which embeds into such algebra must be of the form ∏kMnk(C) for some countable (possibly finite) collection (nk)k of natural numbers. Under additional assumptions, we also show that the sequence (nk)k has to be bounded: in other words, the only embedded von Neumann algebras are the “obvious” ones.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2023.110186