Extrapolation in general quasi-Banach function spaces

In this work we prove off-diagonal, limited range, multilinear, vector-valued, and two-weight versions of the Rubio de Francia extrapolation theorem in general quasi-Banach function spaces. We prove mapping properties of the generalization of the Hardy-Littlewood maximal operator to very general bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2023-11, Vol.285 (10), p.110130, Article 110130
1. Verfasser: Nieraeth, Zoe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we prove off-diagonal, limited range, multilinear, vector-valued, and two-weight versions of the Rubio de Francia extrapolation theorem in general quasi-Banach function spaces. We prove mapping properties of the generalization of the Hardy-Littlewood maximal operator to very general bases that includes a method to obtain self-improvement results that are sharp with respect to its operator norm. Furthermore, we prove bounds for the Hardy-Littlewood maximal operator in weighted Lorentz, variable Lebesgue, and Morrey spaces, and recover and extend several extrapolation theorems in the literature. Finally, we provide an application of our results to the Riesz potential and the Bilinear Hilbert transform.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2023.110130