Generalized Orlicz spaces of Banach-valued functions: Basic theory and duality
For a measure space Ω, we extend the theory of Orlicz spaces generated by an even convex integrand φ:Ω×X→[0,∞] to the case when the range Banach space X is arbitrary. We settle fundamental structural properties such as completeness, characterize separability, reflexivity and represent the dual space...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2023-09, Vol.285 (5), p.109996, Article 109996 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a measure space Ω, we extend the theory of Orlicz spaces generated by an even convex integrand φ:Ω×X→[0,∞] to the case when the range Banach space X is arbitrary. We settle fundamental structural properties such as completeness, characterize separability, reflexivity and represent the dual space. This representation includes the case when X′ has no Radon-Nikodym property or φ is unbounded. We apply our theory to represent convex conjugates and Fenchel-Moreau subdifferentials of integral functionals, leading to the first general such result on function spaces with non-separable range space. For this, we prove a new interchange criterion between infimum and integral for non-separable range spaces, which we consider to be of independent interest. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2023.109996 |