Generalized Orlicz spaces of Banach-valued functions: Basic theory and duality

For a measure space Ω, we extend the theory of Orlicz spaces generated by an even convex integrand φ:Ω×X→[0,∞] to the case when the range Banach space X is arbitrary. We settle fundamental structural properties such as completeness, characterize separability, reflexivity and represent the dual space...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2023-09, Vol.285 (5), p.109996, Article 109996
1. Verfasser: Ruf, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a measure space Ω, we extend the theory of Orlicz spaces generated by an even convex integrand φ:Ω×X→[0,∞] to the case when the range Banach space X is arbitrary. We settle fundamental structural properties such as completeness, characterize separability, reflexivity and represent the dual space. This representation includes the case when X′ has no Radon-Nikodym property or φ is unbounded. We apply our theory to represent convex conjugates and Fenchel-Moreau subdifferentials of integral functionals, leading to the first general such result on function spaces with non-separable range space. For this, we prove a new interchange criterion between infimum and integral for non-separable range spaces, which we consider to be of independent interest.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2023.109996