Subspaces of Hilbert-generated Banach spaces and the quantification of super weak compactness

We introduce a measure of super weak noncompactness Γ defined for bounded subsets and bounded linear operators in Banach spaces that allows to state and prove a characterization of the Banach spaces which are subspaces of a Hilbert-generated space. The use of super weak compactness and Γ casts light...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2023-05, Vol.284 (10), p.109889, Article 109889
Hauptverfasser: Grelier, G., Raja, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce a measure of super weak noncompactness Γ defined for bounded subsets and bounded linear operators in Banach spaces that allows to state and prove a characterization of the Banach spaces which are subspaces of a Hilbert-generated space. The use of super weak compactness and Γ casts light on the structure of these Banach spaces and complements the work of Argyros, Fabian, Farmaki, Godefroy, Hájek, Montesinos, Troyanski and Zizler on this subject. A particular kind of relatively super weakly compact sets, namely uniformly weakly null sets, plays an important role and exhibits connections with Banach-Saks type properties.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2023.109889