Subspaces of Hilbert-generated Banach spaces and the quantification of super weak compactness
We introduce a measure of super weak noncompactness Γ defined for bounded subsets and bounded linear operators in Banach spaces that allows to state and prove a characterization of the Banach spaces which are subspaces of a Hilbert-generated space. The use of super weak compactness and Γ casts light...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2023-05, Vol.284 (10), p.109889, Article 109889 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce a measure of super weak noncompactness Γ defined for bounded subsets and bounded linear operators in Banach spaces that allows to state and prove a characterization of the Banach spaces which are subspaces of a Hilbert-generated space. The use of super weak compactness and Γ casts light on the structure of these Banach spaces and complements the work of Argyros, Fabian, Farmaki, Godefroy, Hájek, Montesinos, Troyanski and Zizler on this subject. A particular kind of relatively super weakly compact sets, namely uniformly weakly null sets, plays an important role and exhibits connections with Banach-Saks type properties. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2023.109889 |