A Hilbert space approach to singularities of functions
We introduce the notion of a pseudomultiplier of a Hilbert space H of functions on a set Ω. Roughly, a pseudomultiplier of H is a function which multiplies a finite-codimensional subspace of H into H, where we allow the possibility that a pseudomultiplier is not defined on all of Ω. A pseudomultipli...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2023-03, Vol.284 (6), p.109826, Article 109826 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We introduce the notion of a pseudomultiplier of a Hilbert space H of functions on a set Ω. Roughly, a pseudomultiplier of H is a function which multiplies a finite-codimensional subspace of H into H, where we allow the possibility that a pseudomultiplier is not defined on all of Ω. A pseudomultiplier of H has singularities, which comprise a subspace of H, and generalize the concept of singularities of an analytic function, even though the elements of H need not enjoy any sort of analyticity. We analyse the natures of these singularities, and obtain a broad classification of them in function-theoretic terms. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2022.109826 |