A Hilbert space approach to singularities of functions

We introduce the notion of a pseudomultiplier of a Hilbert space H of functions on a set Ω. Roughly, a pseudomultiplier of H is a function which multiplies a finite-codimensional subspace of H into H, where we allow the possibility that a pseudomultiplier is not defined on all of Ω. A pseudomultipli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of functional analysis 2023-03, Vol.284 (6), p.109826, Article 109826
Hauptverfasser: Agler, Jim, Lykova, Zinaida A., Young, N.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the notion of a pseudomultiplier of a Hilbert space H of functions on a set Ω. Roughly, a pseudomultiplier of H is a function which multiplies a finite-codimensional subspace of H into H, where we allow the possibility that a pseudomultiplier is not defined on all of Ω. A pseudomultiplier of H has singularities, which comprise a subspace of H, and generalize the concept of singularities of an analytic function, even though the elements of H need not enjoy any sort of analyticity. We analyse the natures of these singularities, and obtain a broad classification of them in function-theoretic terms.
ISSN:0022-1236
1096-0783
DOI:10.1016/j.jfa.2022.109826