Asymptotic stability for two-dimensional Boussinesq systems around the Couette flow in a finite channel
In this paper, we study the asymptotic stability for the two-dimensional Navier-Stokes Boussinesq system around the Couette flow with small viscosity ν and small thermal diffusion μ in a finite channel. In particular, we prove that if the initial velocity and initial temperature (vin,ρin) satisfies...
Gespeichert in:
Veröffentlicht in: | Journal of functional analysis 2023-01, Vol.284 (1), p.109736, Article 109736 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the asymptotic stability for the two-dimensional Navier-Stokes Boussinesq system around the Couette flow with small viscosity ν and small thermal diffusion μ in a finite channel. In particular, we prove that if the initial velocity and initial temperature (vin,ρin) satisfies ‖vin−(y,0)‖Hx,y2≤ε0min{ν,μ}12 and ‖ρin−1‖Hx1Ly2≤ε1min{ν,μ}1112 for some small ε0,ε1 independent of ν,μ, then for the solution of the two-dimensional Navier-Stokes Boussinesq system, the velocity remains within O(min{ν,μ}12) of the Couette flow, and approaches to Couette flow as t→∞; the temperature remains within O(min{ν,μ}1112) of the constant 1, and approaches to 1 as t→∞. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1016/j.jfa.2022.109736 |